Electric Sheriff Vehicles

Composite Covers
Composite Covers
September 18, 2014
Ambulance
Electric Ambulance
September 18, 2014
Electric Sheriff Vehicles

Mega Engineering Vehicle will Design and Engineer Electric Sheriff Vehicles with the most advance technology in the world!
The most Advanced Zero Emission Electric Sheriff Vehicles!

GFMI Police_0017

Electric Sheriff Vehicles Specification And Features:

The power of a vehicle electric motor, as in other vehicles, is measured in kilowatts (kW). 100 kW is roughly equivalent to 134 horsepower, although electric motors can deliver their full torque over a wide RPM range, so the performance is not equivalent, and far exceeds a 134 horsepower (100 kW) fuel-powered motor, which has a limited torque curve.
Usually, direct current (DC) electricity is fed into a DC/AC invert-er where it is converted to alternating current (AC) electricity and this AC electricity is connected to a 3-phase AC motor.
For electric trains, forklift trucks, and some electric cars, DC motors are often used. In some cases, universal motors are used, and then AC or DC may be employed. In recent production vehicles, various motor types have been implemented, for instance: Induction motors within Tesla Motor vehicles and permanent magnet machines in the Nissan Leaf.
A plug-in electric vehicle (PEV) is any motor vehicle that can be recharged from any external source of electricity, such as wall sockets, and the electricity stored in the rechargeable battery packs drives or contributes to drive the wheels. PEV is a subcategory of electric vehicles that includes all-electric or battery electric vehicles (BEVs), plug-in hybrid vehicles, (PHEVs), and electric vehicle conversions of hybrid electric vehicles and conventional internal combustion engine vehicles.
Most large electric transport systems are powered by stationary sources of electricity that are directly connected to the vehicles through wires. Electric traction allows the use of regenerative braking, in which the motors are used as brakes and become generators that transform the motion of, usually, a train into electrical power that is then fed back into the lines. This system is particularly advantageous in mountainous operations, as descending vehicles can produce a large portion of the power required for those ascending. This regenerative system is only viable if the system is large enough to utilise the power generated by descending vehicles.
In the systems above motion is provided by a rotary electric motor. However, it is possible to “unroll” the motor to drive directly against a special matched track. These linear motors are used in maglev trains which float above the rails supported by magnetic levitation. This allows for almost no rolling resistance of the vehicle and no mechanical wear and tear of the train or track. In addition to the high-performance control systems needed, switching and curving of the tracks becomes difficult with linear motors, which to date has restricted their operations to high-speed point to point services.

Leave a Reply