The most Advanced Space Project!
Mega Engineering Vehicle has developed Space Project concept with Mega’s Space Project with the most advanced technology in the world.
The International Space Station provides a platform to conduct scientific research. While small unmanned spacecraft can provide platforms for zero gravity and exposure to space, space stations offer a long term environment where studies can be performed potentially for decades, combined with ready access by human researchers over periods that exceed the capabilities of manned spacecraft
The Station simplifies individual experiments by eliminating the need for separate rocket launches and research staff. The wide variety of research fields include astrobiology, astronomy, human research including space medicine and life sciences, physical sciences, materials science, space weather, and weather on Earth (meteorology). Scientists on Earth have access to the crew’s data and can modify experiments or launch new ones, which are benefits generally unavailable on unmanned spacecraft. Crews fly expeditions of several months duration, providing approximately 160-man-hours a week of labor with a crew of 6.
When in space, the purpose of a propulsion system is to change the velocity, or v, of a spacecraft. Because this is more difficult for more massive spacecraft, designers generally discuss momentum, mv. The amount of change in momentum is called impulse. So the goal of a propulsion method in space is to create an impulse.
When launching a spacecraft from Earth, a propulsion method must overcome a higher gravitational pull to provide a positive net acceleration. In orbit, any additional impulse, even very tiny, will result in a change in the orbit path.
The rate of change of velocity is called acceleration, and the rate of change of momentum is called force. To reach a given velocity, one can apply a small acceleration over a long period of time, or one can apply a large acceleration over a short time. Similarly, one can achieve a given impulse with a large force over a short time or a small force over a long time. This means that for maneuvering in space, a propulsion method that produces tiny accelerations but runs for a long time can produce the same impulse as a propulsion method that produces large accelerations for a short time. When launching from a planet, tiny accelerations cannot overcome the planet’s gravitational pull and so cannot be used.Earth’s surface is situated fairly deep in a gravity well. The escape velocity required to get out of it is 11.2 kilometers/second.